石油焦孔隙度与锂电池负极材料的研究
嘉碳针对增碳剂孔隙度与锂电池负极材料的研究展开研究。
石墨的表面孔隙结构是决定电池嵌锂能力的一个重要因素。石墨材料表面微孔的存在可以增加Li+的扩散通道,减小Li+的扩散阻力,从而有效提高材料的倍率性能。
将石墨置于强碱(KOH)水溶液中蚀刻,后在氮气气氛中800℃下退火处理,使其表面产生纳米孔隙。这些纳米孔隙可作为Li+的入口, 使Li+不仅可以从石墨端面进入,也可以从基面嵌入,缩短了迁移路径。经测试,以3C的速率充放电,经KOH蚀刻的石墨负极有93%的容量保持率,高于原始石墨(85%);在6C的速率下,可达到74%的容量保持率。
比较了原始石墨、KOH蚀刻-退火石墨及80℃条件下KOH蚀刻石墨等几种负极材料的容量保持率,证明在80℃下蚀刻石墨的容量保持率最好,蚀刻-退火石墨次之,产生这种情况的原因是高温退火破坏了晶体的结构。通过阻抗分析,50次循环后,蚀刻石墨的Li+扩散阻力仅为原始石墨的60%,进一步解释了其倍率性能的优化。也有学者采用气相沉积法在石墨表面原位生长高导电性的碳纳米管,使石墨的首次充放电效率>95%,循环528次后容量保持率>92%。
由此可见,增碳剂石墨表面孔隙结构的优化,可以增加Li+的扩散通道,降低Li+的扩散阻力,是提高石墨倍率性能及循环稳定性的有效手段。
标注:仅供参考